API Reference

Complete reference documentation for all tangent/ds modules and functions.


Modules

Module Namespace Description
Statistics ds.stats GLM, hypothesis tests, distributions, model comparison
Machine Learning ds.ml KNN, trees, forests, MLP, preprocessing, validation
Multivariate Analysis ds.mva PCA, LDA, RDA, CCA ordination methods
Visualization ds.plot Observable Plot configs for biplots, ROC, diagnostics
Core Utilities ds.core Math, linear algebra, tables, formulas, optimization

Usage Pattern

Most tangent/ds classes follow the fit-predict pattern:

import * as ds from '@tangent/ds';

// 1. Create a model
const model = new ds.ml.KNNClassifier({ k: 5 });

// 2. Fit to data (Table API)
model.fit({ data: myData, X: ['feature1', 'feature2'], y: 'target' });

// 3. Make predictions
const predictions = model.predict({ data: newData, X: ['feature1', 'feature2'] });

Input Styles

All estimators support multiple input styles:

Table API (recommended):

model.fit({ data: myData, X: ['col1', 'col2'], y: 'target' })

Array API:

model.fit(X, y)

Formula API (GLM only):

model.fit({ formula: 'y ~ x1 + x2', data: myData })

Serialization

All models support persistence via JSON:

const json = model.toJSON();
const restored = ModelClass.fromJSON(json);

Table of contents


Back to top

This site uses Just the Docs, a documentation theme for Jekyll.